
Mach-O Libre
Pile Driving Apple Malware with

Static Analysis, Big Data, & Automation

Aaron Stephens & Will Peteroy

Introductions

Aaron
UWT CE/CS

CCDC
Batman’s Kitchen

Neg9

Will
@wepIV

Co-Founder / CEO
ICEBRG.IO

www.icebrg.io

Greetz

Elizabeth Walkup
(Stanford)
Andrew Case
(Volatility)

Neil Kandalgaonkar
(Sauce Labs)
Mario De Tore

(ICEBRG)

Thanks everybody!

“Mac Malware
Detection via
Static File
Analysis”

github.com/saucelabs/isign

Why are We Here?
1. We (ICEBRG) expand or extend on current tools to handle

gaps in our capabilities

2. ICEBRG interns are required to have an “intern project”
which challenges them and does something productive for
us and for the community

3. Saw the opportunity to build a flexible, performant, open
source Mach-O parser for everyone

intern

Why Should You Care?
Apple product usage ++
(Even in the Enterprise)
Apple Malware ++
(KeyRaider, YiSpecter, etc.)

How Did it Start?
The format is highly complex

and looked like a good
rabbit hole

Solved Problem? Sort of… (not really)
There are other parsers.
...some cost money ($$$)
...some require a knowledge of
Objective-C / C++
...most have only partial coverage of
binary metadata

Areas for improvement
1. Accessibility (python)
2. Coverage / Extensibility
3. Free (Open Source)

Understand the
history

Identify key features

Research the format

Work through the code

Research the format

Triumph

Rinse, repeat

Getting the Lay of
the Land

TL;DR History Lesson
Thanks Wikipedia!

1977: Berkeley - BSD

1985: CMU - Mach Kernel

1986: Berkeley - 4.3BSD

1989: NeXT - NeXTSTEP

1993: Berkeley - FreeBSD

1997: Apple acquires NeXT

2000: Apple - Darwin

2001: Apple - OS X 10.0

What is it?

$ man Mach-O
The object files produced by the
assembler and link editor are in
Mach-O (Mach object) file format.

“... a file format for
executables, object code,

shared libraries,
dynamically-loaded code, and

coredumps.” - Wikipedia

............... k.

The complete description of a
Mach-O file is given in a number
of include files. The file <mach-
o/loader.h> describes the headers,
<mach-o/nlist.h> describes the
symbol table entries with <mach-
o/stab.h> supplementing it, and
<mach-o/reloc.h> describes the
relocation entries.

Where is it Found?
$ file /bin/* | grep ‘Mach-O’ | wc -l
 39
$ file /sbin/* | grep ‘Mach-O’ | wc -l
 73
$ file /usr/bin/* | grep ‘Mach-O’ | wc -l
 913

● /Applications/
● /Library/
● /usr/bin/
● /Cores/
● /System/

 MACH-O’S...

MACH-O’S EVERYWHERE

Overall Structure

And other
fun stuff...

HEADER
LOAD COMMANDS

SEGMENT COMMAND 1
SEGMENT COMMAND 2

...

DATA
 SECTION 1 DATA
 SECTION 2 DATA
 SECTION 3 DATA

 SECTION 4 DATA
 SECTION 5 DATA
 ... `
 SECTION N DATA

...

SE
G.
 1

SE
G.
 2

New segment,
but section #’s
don’t reset.

The usual suspects:
● __TEXT
● __DATA
● __OBJC
● __IMPORT
● __LINKEDIT

Layout, dependencies,
and generic info for
the kernel and linker

Higher level binary
description: magic,
architecture, and

flags.

Mach-O File Format VS. Executable and Linkable Format(elf)

Jonathan Levin - RSA 2015
http://newosxbook.com/articles/CodeSigning.pdf

Mac OS X and iOS
Internals

Down to Details

Header /*
 * The 32-bit mach header appears at the very beginning of the object
 * file for 32-bit architectures.
 */
struct mach_header {
 uint32_t magic; /* mach magic number identifier */
 cpu_type_t cputype; /* cpu specifier */
 cpu_subtype_t cpusubtype; /* machine specifier */
 uint32_t filetype; /* type of file */
 uint32_t ncmds; /* number of load commands */
 uint32_t sizeofcmds; /* the size of all the load commands */
 uint32_t flags; /* flags */
};

/*
 * The 64-bit mach header appears at the very beginning of object
 * files for 64-bit architectures.
 */
struct mach_header_64 {
 uint32_t magic; /* mach magic number identifier */
 cpu_type_t cputype; /* cpu specifier */
 cpu_subtype_t cpusubtype; /* machine specifier */
 uint32_t filetype; /* type of file */
 uint32_t ncmds; /* number of load commands */
 uint32_t sizeofcmds; /* the size of all the load commands */
 uint32_t flags; /* flags */
 uint32_t reserved; /* reserved */
};

/usr/include/mach-o/loader.h

/*
 * Constant for the magic
 * field of the mach_header
 * (32-bit architectures)
 */
#define MH_MAGIC 0xfeedface
#define MH_CIGAM 0xcefaedfe

/*
 * Constant for the magic
 * field of the mach_header_64
 * (64-bit architectures)
 */
#define MH_MAGIC_64 0xfeedfacf
#define MH_CIGAM_64 0xcffaedfe

Header: File Types & Flags
/* Constants for the filetype field of the mach_header */
#define MH_OBJECT 0x1 /* relocatable object file */
#define MH_EXECUTE 0x2 /* demand paged executable file */
#define MH_FVMLIB 0x3 /* fixed VM shared library file */
#define MH_CORE 0x4 /* core file */
#define MH_PRELOAD 0x5 /* preloaded executable file */
#define MH_DYLIB 0x6 /* dynamically bound shared library */
#define MH_DYLINKER 0x7 /* dynamic link editor */
#define MH_BUNDLE 0x8 /* dynamically bound bundle file */
#define MH_DYLIB_STUB 0x9 /* shared library stub for static linking only, no section contents */
#define MH_DSYM 0xa /* companion file with only debug sections */
#define MH_KEXT_BUNDLE 0xb /* x86_64 kexts */

/* Constants for the flags field of the mach_header */
#define MH_NOUNDEFS 0x1 /* the object file has no undefined references */
#define MH_INCRLINK 0x2 /* the object file is the output of an incremental link against a base
 file and can't be link edited again */
#define MH_DYLDLINK 0x4 /* the object file is input for the dynamic linker and can't be
 staticly link edited again */
#define MH_BINDATLOAD 0x8 /* the object file's undefined references are bound by the dynamic
 linker when loaded. */
#define MH_PREBOUND 0x10 /* the file has its dynamic undefined references prebound. */
...

What we’re
focused on

Load Commands
#define LC_SEGMENT 0x1 /* segment of this file to be mapped */
#define LC_SEGMENT_64 0x19 /* 64-bit segment of this file to be mapped */
#define LC_SYMTAB 0x2 /* link-edit stab symbol table info */
#define LC_DYSYMTAB 0xb /* dynamic link-edit symbol table info */
#define LC_LOAD_DYLIB 0xc /* load a dynamically linked shared library */
#define LC_CODE_SIGNATURE 0x1d /* local of code signature */
...

/*
 * The load commands directly follow the mach_header. The total size of all
 * of the commands is given by the sizeofcmds field in the mach_header. All
 * load commands must have as their first two fields cmd and cmdsize... Each
 * command type has a structure specifically for it. The cmdsize field is
 * the size in bytes of the particular load command structure plus anything
 * that follows it that is a part of the load command (i.e. section
 * structures, strings, etc.)... The cmdsize for 32-bit architectures MUST
 * be a multiple of 4 bytes and for 64-bit architectures MUST be a multiple
 * of 8 bytes (these are forever the maximum alignment of any load commands).
 * The padded bytes must be zero. All tables in the object file must also
 * follow these rules so the file can be memory mapped. Otherwise the
 * pointers to these tables will not work well or at all on some machines...
 */

struct load_command {
 uint32_t cmd; /* type of load command */
 uint32_t cmdsize; /* total size of command in bytes */
};

49 different load
commands...

49 different
structures?!?!

... eh, more like 30

linkedit_data_command:
 LC_CODE_SIGNATURE
 LC_SEGMENT_SPLIT_INFO
 LC_FUNCTION_STARTS
 LC_DYLIB_CODE_SIGN_DRS
 LC_LINKER_OPTIMIZATION_HINT

Segments & Sections
/* for 32-bit architectures */
struct segment_command {
 uint32_t cmd;
 uint32_t cmdsize;
 char segname[16];
 /*64*/ uint32_t vmaddr;
 /*64*/ uint32_t vmsize;
 /*64*/ uint32_t fileoff;
 /*64*/ uint32_t filesize;
 vm_prot_t maxprot;
 vm_prot_t initprot;
 uint32_t nsects;
 uint32_t flags;
};

/* for 32-bit architectures */
struct section {
 char sectname[16];
 char segname[16];
 /*64*/ uint32_t addr;
 uint32_t size;
 uint32_t offset;
 uint32_t align;
 uint32_t reloff;
 uint32_t nreloc;
 uint32_t flags;
 uint32_t reserved1;
 uint32_t reserved2;
 // uint32_t reserved3;
};

__TEXT
 __text
 __stubs
 __stub_helper
 __const
 __objc_classname
 __objc_methname
 __objc_methtype
 __cstring
 __gcc_except_tab
 __unwind_info
 __eh_frame

__DATA
 __program_vars
 __nl_symbol_ptr
 __got
 ...

Divx_Installer

Symbol Table
struct nlist {
 union {
#ifndef __LP64__
 char *n_name; /* for use when in-core */
#endif
 uint32_t n_strx; /* index into the string table */
 } n_un;
 uint8_t n_type; /* type flag, see below */
 uint8_t n_sect; /* section number or NO_SECT */
 int16_t n_desc; /* see <mach-o/stab.h> */
 /*64*/ uint32_t n_value; /* value of this symbol (or stab offset) */
};

STAB PEXT TYPE EXT

3 31 1

“index” actually
means byte offset :P

/*
 * Values for
 * N_TYPE bits of
 * the n_type field.
 */
#define N_UNDF 0x0
#define N_ABS 0x2
#define N_SECT 0xe
#define N_PBUD 0xc
#define N_INDR 0xa

Indicates “stab”
(or debugging)

symbol.

/usr/include/mach-o/nlist.h

Symbols… But what do they mean?!
N_UNDF (0x0): The symbol is undefined.
Undefined symbols are symbols referenced in
this module but defined in a different
module. Set the n_sect field to NO_SECT.

N_ABS (0x2): The symbol is absolute. The
linker does not update the value of an
absolute symbol. Set the n_sect field to
NO_SECT.

N_SECT (0xe): The symbol is defined in the
section number given in n_sect.

N_PBUD (0xc): The symbol is undefined and
the image is using a prebound value for the
symbol. Set the n_sect field to NO_SECT.

N_INDR (0xa): The symbol is defined to be
the same as another symbol. The n_value
field is an index into the string table
specifying the name of the other symbol.
When that symbol is linked, both this and
the other symbol point to the same defined
type and value.

http://math-atlas.sourceforge.net/devel/assembly/MachORuntime.pdf

#define GET_LIBRARY_ORDINAL(n_desc) (((n_desc) >> 8) & 0xff)

Imported Symbols (Classes,
Functions, Methods, Fields, etc.)

MH_TWOLEVEL: Determining Dynamic
Library from high 8 bits of n_desc.

_OBJC_METACLASS_$_FRAppDelegate
/System/Library/PrivateFrameworks/StoreUI.
framework/Versions/A/StoreUI

_OBJC_METACLASS_$_FRStoreWindowController
/System/Library/PrivateFrameworks/StoreUI.
framework/Versions/A/StoreUI

_OBJC_METACLASS_$_NSObject
/usr/lib/libobjc.A.dylib

Local Symbols

String Table
/*
 * The symtab_command contains the offsets and sizes of
 * the link-edit 4.3BSD "stab" style symbol table
 * information as described in the header files <nlist.h>
 * and <stab.h>.
 */
struct symtab_command {
 uint32_t cmd; /* LC_SYMTAB */
 uint32_t cmdsize; /* sizeof(struct symtab_command) */
 uint32_t symoff; /* symbol table offset */
 uint32_t nsyms; /* number of symbol table entries */
 uint32_t stroff; /* string table offset */
 uint32_t strsize; /* string table size in bytes */
};

string table == just a bunch of strings! :D

Code Signature
Code Directory
● The “Bookkeeper”
● Hashes

○ Executable
○ Info.plist
○ Signature

● Identity

Requirements
● Validation

constraints
● Requirement

Language (see
link below)

● identifier
● certificates

Certificates
● X.509
● CMS SignedData

in DER format
● Typically

anchored by
“Apple Root
CA”

Entitlements
● Permissions
● Capabilities
● iCloud
● Push

Notifications
● App Sandboxing

https://developer.apple.com/library/mac/documentation/Security/Conceptual/CodeSigningGuide/RequirementLang/RequirementLang.html

Code Signatures: Blobs on Blobs on Blobs...
/*
 * Blob types (magic numbers) for blobs used by Code Signing.
 */
enum {

kSecCodeMagicRequirement = 0xfade0c00, /* single requirement */
kSecCodeMagicRequirementSet = 0xfade0c01, /* requirement set */
kSecCodeMagicCodeDirectory = 0xfade0c02, /* CodeDirectory */
kSecCodeMagicEmbeddedSignature = 0xfade0cc0, /* single-architecture embedded signature */
kSecCodeMagicDetachedSignature = 0xfade0cc1, /* detached multi-architecture signature */
kSecCodeMagicEntitlement = 0xfade7171, /* entitlement blob */
kSecCodeMagicByte = 0xfa /* shared first byte */

};

lol… wut.

//
// A generic blob wrapped around arbitrary (flat) binary data.
// This can be used to "regularize" plain binary data, so it can be handled
// as a genuine Blob (e.g. for insertion into a SuperBlob).
//

Blob?BlobWrapper???

SuperBlob?!?!
libsecurity_codesigning/lib/CSCommonPriv.h

libsecurity_utilities/lib/blob.h

opensource.apple.com

Blobs: They’re not so bad...
/*
 * Structure of an embedded-signature SuperBlob
 */
typedef struct __BlobIndex {

uint32_t type; /* type of entry */
uint32_t offset; /* offset of entry */

} CS_BlobIndex;

typedef struct __SuperBlob {
uint32_t magic; /* magic number */
uint32_t length; /* total length of SuperBlob */
uint32_t count; /* number of index entries following */
CS_BlobIndex index[]; /* (count) entries */
/* followed by Blobs in no particular order as indicated by

 offsets in index */
} CS_SuperBlob;

libsecurity_codesigning/lib/cscdefs.h
/*
 * C form of a CodeDirectory.
 */
typedef struct __CodeDirectory {
 uint32_t magic;
 uint32_t length;
 uint32_t version;
 uint32_t flags;
 uint32_t hashOffset;
 uint32_t identOffset;
 uint32_t nSpecialSlots;
 uint32_t nCodeSlots;
 uint32_t codeLimit;
 uint8_t hashSize;
 uint8_t hashType;
 uint8_t spare1;
 uint8_t pageSize;
 uint32_t spare2;
 /* followed by dynamic
 contentas located by
 offset fields above */
} CS_CodeDirectory;

Standard for every Blob

Specific to Blob type

libsecurity_codesigning/lib/requirements.h
libsecurity_codesigning/lib/sigblob.h

Universal (FAT) Binaries
$ file /usr/bin/python
/usr/bin/python: Mach-O universal binary with 2 architectures
/usr/bin/python (for architecture i386): Mach-O executable i386
/usr/bin/python (for architecture x86_64): Mach-O 64-bit executable x86_64

$ file /usr/lib/dyld
/usr/lib/dyld: Mach-O universal binary with 2 architectures
/usr/lib/dyld (for architecture x86_64): Mach-O 64-bit dynamic linker x86_64
/usr/lib/dyld (for architecture i386):Mach-O dynamic linker i386

$ file /usr/bin/* | grep ‘universal’ | wc -l
 120

file type

architecture

Yo binary so fat, its Mach-O’s got Mach-O’s!

HEADERS! LOAD COMMANDS!

MACH-O’S

STRING &

SYMBOL TABLES! CODE SIGNATURES!

Additional Features

Hashing
(md5, sha1, sha256)

File Entropy

Multiple input files

Output file

Abnormalities
(error handling,
work in progress)

Convenience & Usability

Summon the Demo Demons

Hurdles & Lessons
Learned

Documentation on the
Mach-O format is sparse,
and scattered across the
interwebz, some of it
pretty well hidden.

Reading other people’s
code sucks.

Just because it’s not all
human readable, doesn’t
mean it’s not worth
reading. The information
is detailed, and
potentially very useful.

Areas for
Improvement

Code quality, consistency,
robustness, etc.

Documentation (spelunking
shouldn’t be a headache)

Error handling
(understanding errors)

Moving Forward

Parsed all the
Things… Now what?

What can we learn from all
this data?

How do we give it context
and understand it?

How do we automate this
process?

Dynamic Libraries

Functions/Classes/Methods

Strings

Abnormalities

Code Signature

Encryption (Good vs. Evil)

Toolchains
https://www.carbonblack.com/2016/03/01/analyzing-entrypoint-
instruction-differences-in-mach-o-files-with-mpesm/

Finding Evil...

https://www.carbonblack.com/2016/03/01/analyzing-entrypoint-instruction-differences-in-mach-o-files-with-mpesm/
https://www.carbonblack.com/2016/03/01/analyzing-entrypoint-instruction-differences-in-mach-o-files-with-mpesm/
https://www.carbonblack.com/2016/03/01/analyzing-entrypoint-instruction-differences-in-mach-o-files-with-mpesm/

Machine learning is hard.

We built a really cool model.

2 key problems:
1. Size / Diversity of available

corpus
2. Training Set

Overfitting is a thing.

We’re not giving up though.

This was almost a talk about machine learning

What’s Next?

Continue to build corpus
(big bucket ‘o binaries)

Feature selection

Classification

Clustering

Malware discovery!

If you’re interested:
aaron@icebrg.io
will@icebrg.io

Future goals...

mailto:aaron@icebrg.io
mailto:aaron@icebrg.io
mailto:will@icebrg.io
mailto:will@icebrg.io

Questions?
https://github.com/aaronst/macholibre.git

aaron@icebrg.io
will@icebrg.io
www.icebrg.io

THANK YOU!!!

